PERMUTATION - 03

01. a number of 4 different digits is formed by using the digits 1, 2, 3, 4, 5, 6, 7, 8 in all possible ways . Find how many numbers are greater than 3000

thousand place can be filled by any one of the digits 3, 4, 5, 6, 7, 8 in $^{6}P_{1}$ ways Having done that the remaining 3 places can be filled by any 3 of the remaining 7 digits in $^{7}P_{3}$ ways

By fundamental principle of Multipliation ,

Total numbers formed = ${}^{6}P_{1} \times {}^{7}P_{3}$ = 6 x 7 x 6 x 5 = 1260

02. a number of 4 different digits is to be formed by using the digits 1, 2, 3, 4, 5, 6, 7, 8, 9. Find how many of them are

a) greater than 4000

thousand place can be filled by any one of the digits 4, 5, 6, 7, 8, 9 in $^{6}P_{1}$ ways

Having done that the remaining 3 places can be filled by any 3 of the remaining 8 digits in ⁸P3 ways

By fundamental principle of Multipliation ,

Total numbers formed = $^{6}P_{1} \times ^{8}P_{3}$

= 6 x 8 x 7 x 6 = 2016

b) divisible by 2

unit place can be filled by any one of the digits 2, 4, 6, 8 in ${}^{4}P_{1}$ ways

Having done that the remaining 3 places can be filled by any 3 of the remaining 8 digits in ⁸P₃ ways

By fundamental principle of Multipliation,

Total numbers formed = ${}^{4}P_{1} \times {}^{8}P_{3}$

 $= 4 \times 8 \times 7 \times 6 = 1344$

c) divisible by 5

unit place can be filled by digit '5' in 1 way

Having done that the remaining 3 places can be filled by any 3 of the remaining 8 digits in ⁸P3 ways

By fundamental principle of Multipliation ,

Total numbers formed = $1 \times {}^{8}P_{3}$

= 8 x 7 x 6 = 336

03. How many 5 different digit numbers can be formed with digits 2, 3, 5, 7, 9 which are

a) greater than 30000

thousand place can be filled by any one of the digits 3, 5, 7, 9 in ${}^{4}P_{1}$ ways Having done that the remaining 4 places can be filled by remaining 4 digits in ${}^{4}P_{4} = 4!$ ways By fundamental principle of Multipliation, Total numbers formed = ${}^{4}P_{1} \times 4! = 4 \times 24 = 96$

b) less than 70000

thousand place can be filled by any one of the digits 2, 3, 5 in ${}^{3}P_{1}$ ways Having done that the remaining 4 places can be filled by remaining 4 digits in ${}^{4}P_{4}$ = 4!ways By fundamental principle of Multipliation ,

Total numbers formed = ${}^{3}P_{1} \times 4! = 3 \times 24 = 72$

b) between 30000 & 90000

thousand place can be filled by any one of the digits 3, 5, 7 in ${}^{3}P_{1}$ ways Having done that the remaining 4 places can be filled by remaining 4 digits in ${}^{4}P_{4}$ = 4!ways By fundamental principle of Multipliation ,

Total numbers formed = ${}^{3}P_{1} \times 4! = 3 \times 24 = 72$

04. how many different digit numbers can be formed between 100 and 1000 using 0, 1, 3, 5 and 7 which is not divisible by 5

unit place can be filled by any one of digits 1 , 3 & 7 in ${}^{3}P_{1}$ ways

Having done that ,

Hundreds place can be filled by any one the remaining 3 digits ('0' excluded) in ³P₁ ways Having done that , tens place can then be filled by any one of the remaining 3 digits in ³P₁ ways

By fundamental principle of Multipliation ,

Total numbers formed = ${}^{3}P_{1} \times {}^{3}P_{1} \times {}^{3}P_{1} = 3 \times 3 \times 3 = 27$

05.How many different digit numbers are formed between 7000 and 8000 using 0 , 1 , 3 , 5 , 7 and 9 which are divisible by 5

thousand place can be filled by digit '7' in 1 way

Having done that , units place can be filled by any one of the digits 0 , 5 in $^2{\rm P}_1$ ways Having done that ,

remaining 2 places can be filled by any 2 of the remaining 4 digits in ${}^{4}\text{P}_{2}$ ways

By fundamental principle of Multipliation ,

Total numbers formed = $1 \times {}^{2}P_{1} \times {}^{4}P_{2}$

 $= 1 \times 2 \times 4 \times 3 = 24$

06. how many even numbers of four digits can be formed using digits 0, 1, 2, 3, 4, 5 and 6, no digit being used more than once

Case 1 : Numbers ending with '0'

Unit place can be filled by digit '0' in one way

Having done that the remaining 3 places can be filled by any 3 of remaining 6 digits in ⁶P₃ ways

By fundamental principle of Multipliation ,

Numbers formed = $1 \times {}^{6}P_{3}$ = $6 \times 5 \times 4$ = 120

Case 2 : Numbers ending with '2 , 4 , 6'

Unit place can be filled by any one of digits 2, 4, 6 in ³P1 ways

Having done that ,

Thousand place can be filled by any one the remaining 5 digits ('0' excluded) in ⁵P₁ ways Having done that the remaining 2 places can be filled by any 2 of remaining 5 digits in ⁵P₂ ways

By fundamental principle of Multipliation ,

Numbers formed = ${}^{3}P_{1} \times {}^{5}P_{1} \times {}^{5}P_{2}$ = $3 \times 5 \times 5 \times 4$ = 300

By fundamental principle of **ADDITION**

Total numbers formed = 120 + 300 = 420

07. how many 5 different digit numbers can be formed with digits 0 , 1 , 3 , 5 , 6 , 8 and 9 divisible by 5

Case 1 : Numbers ending with '0'

Unit place can be filled by digit '0' in one way

Having done that the remaining 4 places can be filled by any 3 of remaining 6 digits in $^{6}P_{4}$ ways

By fundamental principle of Multipliation ,

Numbers formed = $1 \times {}^{6}P_{4}$ = $6 \times 5 \times 4 \times 3$ = 360

Case 2 : Numbers ending with '5'

Unit place can be filled by digit '5' in 1 ways

Having done that ,

ten Thousand place can be filled by any one the remaining 5 digits ('0' excluded) in ${}^{5}P_{1}$ ways

Having done that the remaining 3 places can be filled by any 3 of remaining 5 digits in ${}^{5}P_{3}$ ways

By fundamental principle of Multipliation ,

Numbers formed = $1 \times {}^{5}P_{1} \times {}^{5}P_{3}$ = $1 \times 5 \times 5 \times 4 \times 3$ = 300

By fundamental principle of **ADDITION**

Total numbers formed = 360 + 300 = 660

STRAIGHT LINES

NOV 2015

y - 3 = 2 (x - 4)Find the coordinates of the orthocenter of a triangle whose vertices are (-2,3) , (6,-1) , (4,3)

ALTITUDE AD

 $y - 3 = \frac{1}{2}(x + 2)$ 2y - 6 = x + 2

ALTITUDE CE

x - 2y = -8

 $y - y_1 = m(x - x_1)$

y - 3 = 2x - 82x - y = 5

ORTHOCENTER 'H'

$$x - 2y = -8$$

 $2x - y = 5 x 2$

$$x - 2y = -8$$

 $4x - 2y = 10$
 $-3x = -18$
 $x = 6$
subs in (1)
 $y = 7$ H (6,7)

- 5 -

02.

The points A(2,3) , B(4, -1) and C(-1,2) are the vertices of \triangle ABC . Find the length of the perpendicular from C on AB and hence find then area of \triangle ABC

Equation of AB

BASE (AB)

$$= \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}$$

$$= \sqrt{(2 - 4)^{2} + (3 + 1)^{2}}$$

$$= \sqrt{4} + 16$$

$$= \sqrt{20}$$

$$= \sqrt{20}$$

$$= 2\sqrt{5}$$
AREA OF (Δ ABC)

$$= \frac{1}{2} \times BASE \times HEIGHT$$

$$= \frac{1}{2} \times 2\sqrt{5} \times \frac{7}{\sqrt{5}}$$

$$= 7 \text{ sq. units}$$

the length of the perpendicular from C on AB

Height (H)

$$C (-1,2)$$

$$2x + y - 7 = 0$$

$$A(2,3) \qquad D \quad B(4,-1)$$

$$H = \left| \frac{2(-1) + 2 - 7}{\sqrt{2^2 + 1^2}} \right|$$

$$= \left| \frac{-2 + 2 - 7}{\sqrt{5}} \right|$$

$$= \left| \frac{-7}{\sqrt{5}} \right|$$

 $= \frac{7}{\sqrt{5}}$